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The overflowing cylinder (OFC) is an experimental apparatus designed to generate
a controlled straining flow at a free surface, whose dynamic properties may then be
investigated. Surfactant solution is pumped up slowly through a vertical cylinder.
On reaching the top, the liquid forms a flat free surface which expands radially
before overflowing down the side of the cylinder. The velocity, surface tension and
surfactant concentration on the expanding free surface are measured using a variety
of non-invasive techniques.

A mathematical model for the OFC has been previously derived by Breward et al.
(2001) and shown to give satisfactory agreement with experimental results. However, a
puzzling indeterminacy in the model renders it unable to predict one scalar parameter
(e.g. the surfactant concentration at the centre of the cylinder), which must be therefore
be taken from the experiments.

In this paper we analyse the OFC model asymptotically and numerically. We show
that solutions typically develop one of two possible singularities. In the first, the
surface concentration of surfactant reaches zero a finite distance from the cylinder
axis, while the surface velocity tends to infinity there. In the second, the surfactant
concentration is exponentially large and a stagnation point forms just inside the rim
of the cylinder. We propose a criterion for selecting the free parameter, based on
the elimination of both singularities, and show that it leads to good agreement with
experimental results.

1. Introduction
1.1. Background

A surfactant is a chemical in solution in a liquid that (i) adsorbs preferentially at
interfaces between the liquid and the surrounding atmosphere and (ii) when there
reduces the local surface energy (Atkins 1992). A limiting case is that of insoluble
surfactant which resides only at the interfaces. Many flows of practical importance
to industry and medicine are influenced, beneficially or otherwise, by the presence
of surfactant. Moreover, the special properties of surfactants are increasingly being
exploited in novel technologies and therapies.

This paper concerns an apparatus called the overflowing cylinder (OFC), which is
designed to investigate these properties under controlled conditions. An outline of
the setup and the principal experimental observations are given below in § 1.2; more
details may be found in Bain, Manning-Benson & Darton (2000), Manning-Benson
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(1998), Manning-Benson, Bain & Darton (1997a), Manning-Benson et al. (1997b) and
Manning-Benson et al. (1998).

A theoretical understanding of the fluid mechanics of the OFC is required so
that the experimental results may be properly understood and applied to practical
surfactant flows. To this end, a simple mathematical model has been developed in
Breward et al. (2001). The agreement between the theory and experiments was found
to be encouraging, although a full comparison has thus far been impossible, since
one scalar quantity remains mathematically indeterminate. In other words, the model
admits a one-parameter family of solutions because of a degeneracy in the equations
describing the propagation of surfactant in an interface. In this paper we present
numerical and asymptotic solutions of the model given in Breward et al. (2001).
As well as offering a possible selection mechanism to resolve the indeterminacy,
and allowing experimental results to be more thoroughly analysed, our solutions
shed further light on surfactant flows in general, and on their propensity to develop
spontaneous singularities in particular.

Of the previous models that have been proposed for flows involving surfactant,
many describe the transport of insoluble surfactant by convection and surface dif-
fusion over either a thin film (Halpern & Grotberg 1992; Jensen 1998; Jensen &
Halpern 1998) or a deep layer of liquid (Di Pietro, Huh & Cox 1978; Di Pietro &
Cox 1980; Jensen 1995). In either case, the deformation of the liquid–air interface
under the surfactant-driven Marangoni flow may have a significant influence. When
considering the behaviour of soluble surfactant in a thin liquid film, it is common to
use the well-mixed approximation, in which convection in the bulk is negligible so
that the bulk concentration profile is uniform or linear across the film (see Jensen &
Grotberg 1993; Breward & Howell 2002). In our model, however, the surfactant is
soluble and bulk convection plays a major role in its transport, as in Harper & Dixon
(1974) and Harper (1992). On the other hand, gravity dominates the behaviour of the
free surface, so that deformation of the interface may be neglected.

Our model equations for the liquid velocity and surfactant transport in the OFC
are presented in § 2 and solved numerically in § 3. The singularities observed in
our numerical solutions are analysed asymptotically in § 4. Finally, our results are
compared with experiments and the conclusions are drawn in § 5.

1.2. Description of the experiment

The OFC is shown schematically in figure 1. Surfactant solution is pumped slowly
up through a circular cylinder with radius 4 cm (other sizes between 2.5 and 4 cm
have also been used). Flow straighteners ensure an approximately uniform vertical
flow of a few millimetres per second at the base of the cylinder. On reaching the
top, the liquid forms a flat free surface which expands radially before overflowing
down the side of the cylinder. A variety of independent, non-invasive techniques are
used to measure the liquid velocity, surfactant concentration and surface tension in
a neighbourhood of the cylinder axis. The main experimental observations to be
explained are the following.

(a) The surface velocity Us is zero at the axis and increases approximately linearly
with distance r from the stagnation point. The strength dUs/dr of this straining flow
depends strongly on the concentration of surfactant in the solution, varying from
around 0.1 s−1 for pure water to 2.5 s−1 for a 0.6-molar solution.

(b) The surface concentration Γ takes a well-defined finite value Γ (0) at the axis,
and has a slight quadratic decrease with r. The value Γ (0) is quite different from that
which would be found with the same bulk concentration under static conditions.
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Figure 1. Schematic of the overflowing cylinder apparatus.

(c) The results are found to be virtually independent of the pump velocity, so long
as it is large enough to allow the liquid to overflow steadily.

(d) The cylinder radius likewise appears to have negligible effect on the measure-
ments taken near the axis. Furthermore, the details of the flow over the edge, which
has been modified using various flanges, seem to be unimportant.

The OFC provides an expanding free surface whose parameters may readily be
controlled and whose properties are relatively easy to measure. As indicated by the
observations above, these properties may differ significantly from those of a static
interface, and the influence of the surfactant is expected to be particularly dramatic
for an expanding interface. Indeed, in practical applications, the ability of surfactant
to assist or oppose surface expansion is one of its most significant features.

2. Mathematical model
A detailed derivation of our model for the OFC may be found in Breward et al.

(2001). Here we simply outline the main assumptions made and present the resulting
equations. The flow is assumed to be steady and radially symmetric, so the independent
variables are the cylindrical polar coordinates r and z, measuring distance from the
cylinder axis and vertical depth respectively, as indicated in figure 1. The dependent
variables are the water velocity u, with components u and w in the r- and z-directions,
the bulk concentration C of surfactant in solution and the surface concentration Γ of
surfactant adsorbed at the free surface. Gravity is assumed to be strong enough (i.e.
the Froude number is assumed to be small enough) to keep the free surface effectively
flat, and the origin of coordinates is chosen to locate it at z = 0. The edge of the
cylinder is given by r = a, where a is the radius of the cylinder.

The solution is fed into the cylinder at a uniform bulk concentration Cb with
a pump flux Qp. The governing equations, presented below in dimensionless form,
are essentially the axially symmetric boundary layer equations for u (with density
ρ and shear viscosity µ) and a convection–diffusion equation for C (with diffusion
coefficient D). At the free surface z = 0, boundary conditions are imposed representing
conservation of surfactant and a balance between tangential viscous stress and surface-
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tension gradient. To close the problem, we require two constitutive equations relating
the bulk and surface concentrations and the surface tension σ. The interface is assumed
to be at thermodynamic equilibrium, which implies that functional relationships exist
between σ and Γ , and between Γ and the sub-surface concentration Cs(r) = C(r, 0).
We employ the widely used Langmuir isotherm and Frumkin equation (Adamson
1982), given respectively by

Γ =
ΓsatCs

k + Cs
, σ − σw = RTΓsat log

(
1− Γ

Γsat

)
. (2.1)

Here, σw is the surface tension of pure water, R is the gas constant and T is the
absolute temperature. The parameters Γsat and k, representing the maximum possible
surface concentration and the bulk concentration at which Γ = Γsat/2 respectively,
are determined from static experiments.

We non-dimensionalize the variables as follows:

C = CbC̃, z =
Γsat

Cb
Z̃ =

Γsat

δCb
z̃, w =

DCb

δΓsat

w̃, r = Lr̃, u =
DC2

bL

Γ 2
sat

ũ, (2.2)

where

δ =

√
ρD

µ
, L =

Γ 2
sat

√
RT

C
3/2
b (ρµD3)1/4

. (2.3)

The distinguished lengthscale L represents the distance over which we expect Γ
to vary significantly. Notice that the dimensional thicknesses of the diffusive and
hydrodynamic boundary layers differ by a factor of δ (the inverse square root of
the Prandtl number), which is small for all aqueous surfactant solutions of interest.
For this reason, two different dimensionless variables Z̃ and z̃ are used to represent
the vertical coordinate for the bulk concentration and velocity fields respectively, i.e.
C̃ = C̃(r̃, Z̃), ũ = ũ(r̃, z̃). For ease of notation we henceforth drop the tildes.

The dimensionless boundary-layer equations and boundary conditions read

u
∂u

∂r
+ w

∂u

∂z
=
∂2u

∂z2
+
ε2

r0
F

(
r

r0

)
F ′
(
r

r0

)
, (2.4)

1

r

∂

∂r
(ru) +

∂w

∂z
= 0, (2.5)

u = Us(r) on z = 0, (2.6)

w = 0 on z = 0, (2.7)

u→ εF

(
r

r0

)
as z →∞, (2.8)

u = 0 on r = 0. (2.9)

The function F(r/r0) represents the bulk velocity at infinity and, by solving for an
inviscid flow that is uniform as z →∞ and has a line sink around the rim, is found
to be

F(ρ) =
1

π

∫ ∞
0

I1(kρ)

I1(k)
dk. (2.10)

As shown in figure 2, F(ρ) tends to infinity as ρ→ 1. This is a consequence of our
assumption that gravity dominates, forcing the free surface to be flat. In this limit,
the edge of the cylinder becomes a line sink, which removes fluid at the same rate at
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Figure 2. The function F(ρ) given by (2.10).

which it is introduced by the pump. In practice, there must be a region near r = a
where our zero-Froude-number limit breaks down, and the liquid flows over the edge
of the cylinder at a non-zero (but small) height with a finite (but large) velocity. We
do not attempt to model this complicated weir flow here.

The corresponding equations for C are

Us(r)
∂C

∂r
− 1

r

d

dr
(rUs)Z

∂C

∂Z
=
∂2C

∂Z2
, (2.11)

C = Cs(r) on Z = 0, (2.12)

C → 1 as Z →∞, (2.13)

∂C

∂r
= 0 on r = 0. (2.14)

The problems for u and C are coupled via the two remaining boundary conditions,
representing conservation of adsorbed surfactant and a balance of surface tangential
stress:

∂C

∂Z
=

1

r

d

dr

(
rUsCs

β + Cs

)
on Z = 0, (2.15)

∂u

∂z
=

1

β + Cs

dCs
dr

on z = 0. (2.16)

Equations (2.4)–(2.16) constitute our dimensionless model for u, w, C , Us and Cs.
Both Γ and σ have been eliminated from (2.15), (2.16) in favour of Cs by using (2.1).

The three dimensionless groups remaining in the problem are

r0 =
a

L
≈ 2, β =

k

Cb
≈ 0.16, ε =

QpΓ
2

sat

πa3DC2
b

≈ 0.01, (2.17)

which have been estimated using the typical dimensional parameter values for the
OFC given in table 1. The fact that r0 is order one implies that the lengthscale over
which the surface concentration varies significantly is the same order as the cylinder
radius. Although it appears to be fairly small, it is safest to treat β as an order-one
constant also, since the limit β → 0 fails at low values of Cs. Finally, the smallness
of ε reflects the fact that the pump velocity is much less than the surfactant-induced
surface velocity, and explains the lack of dependence of the experimental results on
Qp. Notice, though, that ε multiplies the function F(r/r0) which tends to infinity as
r → r0, so the limit ε→ 0 is non-uniform in a neighbourhood of r = r0.
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Quantity Symbol Units Approx. value

Cylinder radius a m 4× 10−2

Pump flux Qp m3 s−1 1.6× 10−5

Liquid density ρ kg m−3 103

Liquid viscosity µ kg m−1 s−1 10−3

Bulk concentration Cb mol m−3 0.58
Langmuir constant k mol m−3 0.08
Langmuir constant Γsat mol m−2 4× 10−6

Diffusion coefficient D m2 s−1 5× 10−10

Surface energy RT J mol−1 2.5× 103

Table 1. Typical dimensional parameter values for the overflowing cylinder.

As shown in Breward et al. (2001), the equations and boundary conditions presented
above do not determine a unique solution near r = 0. One further piece of information
is required, and we choose to specify the concentration at the axis of the cylinder:

Cs(0) = C0. (2.18)

If C0 is assumed to be known, then the local behaviour of u and C as r → 0 may
be found from (2.4)–(2.16). In particular, the strength of the stagnation-point flow is
given by

U ′s(0) =
1

π

(
(β + C0)(1− C0)

C0

)2

. (2.19)

However, the concentration at the origin is an important experimentally measured
quantity that ought to be a prediction of the model rather than a parameter to be
specified.

To elucidate this indeterminacy, Breward et al. (2001) constructed an ad hoc
paradigm equation, based on conservation of surfactant coupled with a simple rule
for the acceleration of the surface velocity by a gradient in surface concentration.
Their model equation resembles the porous-medium equation and has the following
properties. As for the full model (2.4)–(2.16), the concentration C0 at the origin must
be specified before a unique solution may be found. If a relatively small value of
C0 is chosen, then the concentration reaches zero at a finite value of r < r0. For
larger values of C0, however, the concentration blows up as r → r0. This led Breward
et al. (2001) to suggest that a unique value of C0 might be selected by requiring the
concentration to be non-zero in r < r0 and finite as r → r0. In the following section
we present numerical solutions of (2.4)–(2.16) and show that this behaviour of the
paradigm equation from Breward et al. (2001) is shared by the full model.

3. Numerical solution
3.1. Discretization

We use a simple scheme that is second order in z and Z and treats the diffusive terms
implicitly. A first-order difference is used to march in the r-direction, such that the
problem to be solved at each new value of r is linear. We truncate at a finite depth
L in the z- and Z-directions and discretize the interval [0, L] using a uniform mesh:
zi = i∆z, Zi = i∆z, ∆z = L/(N + 1) for some integer N. At each value of r, the
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approximate solution is

ui = u(r, zi), wi = w(r, zi), Ci = C(r, Zi), (3.1)

while that obtained at the previous r-step is

ūi = u(r − ∆r, zi), w̄i = w(r − ∆r, zi), Ci = C(r − ∆r, Zi). (3.2)

Instead of wi, it is convenient to obtain the solution in terms of

Wi =
∆r

∆z
wi, W̄i =

∆r

∆z
w̄i. (3.3)

The boundary-layer equation (2.4) is approximated by

ūi(ui − ūi) +
Wi

2
(ūi+1 − ūi−1) = ε2F(F − F) +

∆r

∆z2
(ui+1 − 2ui + ui−1), (3.4)

where Wi is found from (2.5), (2.7) using (e.g.) the trapezium rule,

W0 = 0,

Wi+1 = Wi − 1

2

{
ui+1 + ui −

(
1− ∆r

r

)
(ūi+1 + ūi)

}
. (3.5)

To avoid having to evaluate the integral (2.10) for the subsurface velocity F(r/r0)
repeatedly, we use an approximation for F , given in Appendix A.

The advection–diffusion equation (2.11) for C is discretized via

ū0(Ci − Ci)− i

2
(Ci+1 − Ci−1)

[
u0 −

(
1− ∆r

r

)
ū0

]
=

∆r

∆z2
(Ci+1 − 2Ci + Ci−1). (3.6)

The matching conditions (2.8), (2.13) are applied at the truncated depth L,

uN+1 = εF(r/r0), CN+1 = 1, (3.7)

while the boundary conditions (2.15), (2.16) on z = Z = 0 give rise to

u1 − u−1

2∆z
=

C0 − C0

∆r(β + C0)
, (3.8)

C1 − C−1

2∆z
=
C0(u0 − ū0)

∆r(β + C0)
+
βū0(C0 − C0)

∆r(β + C0)2
+

ū0C0

r(β + C0)
. (3.9)

Now, at each new value of r, assuming that the solutions from the previous step (i.e.
all variables with bars) are known, (3.4)–(3.9) gives a set of linear algebraic equations
for {ui,Wi, Ci}. The resulting sparse system is readily solved by elimination. The step
∆r in the r-direction is varied depending on the rate at which the solution changes
between one step and the next. As pointed out in § 2, to get the solution started, we
have to choose a particular value of C0.

3.2. Results

We evaluate r0, β and ε using the parameter values given in table 1. The value
of C0 remains to be chosen (recall that C0 is dimensionless, representing the ratio
between the dimensional subsurface concentration at the origin and Cb). We start
with a relatively low value of 0.3 and plot the resulting variation of Us and Cs with
r in figure 3. Near the origin, Us is linear as expected, and its slope agrees with the
theoretical prediction (2.19). As suggested by Breward et al. (2001), a singularity, with
Cs → 0 and Us →∞, develops at a finite value of r ≈ 1.62, beyond which we are
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Figure 3. Surface velocity Us and subsurface concentration Cs versus radial coordinate r, for
the parameter values Cb = 0.58 mol m−3, a = 0.04 m, C0 = 0.3 so that r0 ≈ 2.332. The four curves
produced by varying the truncation depth and the number of grid points are indistinguishable. The
dotted line is the asymptotic behaviour predicted by (2.19).

0 1 2 3 4 5 6

0.2

u

z
0 1 2 3 4 5 6

0.2

C

Z

0.4

0.6

0.8

1.0

r = 0
r = 0.5

r = 1.0
r = 1.5
r = 1.6

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 4. Velocity u versus depth z and concentration C versus depth Z , for the same parameter
values as in figure 3.

unable to continue the solution. The effects of refining the mesh and of increasing
the truncation depth L are indicated by the different curves in figure 3; since these
are virtually indistinguishable, the scheme appears to have converged adequately.

The corresponding profiles of u and C versus depth are shown in figure 4 at various
values of r. As the singularity is approached, we see that the variations in u and C are
confined to increasingly narrow boundary layers near z = Z = 0. Since the singularity
occurs at a value of r significantly less than r0 ≈ 2.332 for these parameter values, the
velocity at infinity remains very small throughout.

In figure 5 we show the behaviour of Us and Cs for the same parameter values
but a somewhat larger value of C0 = 0.5. Again, the correct linear behaviour of Us is
obtained near r = 0, and the solutions are only very slightly influenced by variations
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Figure 5. Surface velocity Us and subsurface concentration Cs versus radial coordinate r, for the
parameter values Cb = 0.58 mol m−3, a = 0.04 m, C0 = 0.5, so that r0 ≈ 2.332. The dotted line is the
asymptotic behaviour predicted by (2.19). The insets show the local behaviour near r = r0.

in N and L. Here, however, Cs has not yet reached zero when r approaches r0 ≈ 2.332.
Consequently, as predicted by Breward et al. (2001), Cs tends to infinity as r → r0
while, at the same time, the surface velocity tends to zero. Close-ups of the behaviours
of Us and Cs near r = r0 are given in the insets.

The corresponding variations of u with z and C with Z are shown in figure 6.
Initially, the surface velocity increases while the velocity at depth remains small. As
r approaches r0, the subsurface velocity catches up and finally overtakes the surface
velocity, and we end up with a uniform plug flow that is brought to zero in a tiny
boundary layer at the surface. Meanwhile, the concentration varies only slightly with
r until right at the end, when it starts to increase in a very narrow boundary layer
near Z = 0.

By varying C0 as a shooting parameter, we can attempt to obtain a distinguished
solution that lies between these two generic cases, i.e. for which Cs reaches zero exactly
at r = r0. The variation of Us and Cs with r is shown in figure 7 for a solution close
to this critical one. It appears that the surface velocity again tends to infinity as the
surface concentration tends to zero. In figure 8 we show the variations of u and C
with depth in the same parameter regime for values of r close to r0. This special
solution appears to have the property that the surface and subsurface velocities tend
to infinity at approximately the same rate.

4. Asymptotic behaviour near the singularities
4.1. Motivation

Further support for the structure suggested by our numerical solutions may be
obtained by examining the possible limiting forms of solutions to (2.4)–(2.16). We
begin in § 4.2 by considering the behaviour as Cs → 0, the aim being to confirm that
solutions in which Cs reaches zero at a finite value of r < r0 really are a feature
of the equations rather than a numerical artefact. Similarly, in § 4.3 we examine
the asymptotic behaviour near the edge r = r0 of the cylinder, where the subsurface
velocity tends to infinity. We show that generically Cs grows exponentially while the
surface velocity goes to zero, in agreement with our simulations. Finally, we show in
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Figure 6. Velocity u versus depth z and concentration C versus depth Z , for the same parameter
values as in figure 5.

§ 4.4 that there is a special solution in which Cs → 0 as r → r0, while the surface and
subsurface velocities approach infinity at roughly the same rate.

These analyses help to reassure us that our finite-difference scheme is producing
sensible answers since, in each case, we show that there is good agreement between the
asymptotic predictions and numerical results. Furthermore, they demonstrate local
singular structures supported by the equations which, presumably, may arise in many
other surfactant flows.

4.2. Behaviour as Cs → 0

We start by looking for solutions where Cs → 0 and Us →∞ as r → r∗, for some value
r∗ < r0, as shown in figure 3. The details of the appropriate rescaling and asymptotic
behaviour of equations (2.4)–(2.16) may be found in Appendix B. We find that the
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Figure 7. Surface velocity Us and subsurface concentration Cs versus radial coordinate r, for the
parameter values Cb = 0.58 mol m−3, a = 0.04 m, C0 = 0.391, so that r0 ≈ 2.332.
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Figure 8. Velocity u versus depth z and concentration C versus depth Z , for the same parameter
values as in figure 7.

solution takes the universal local form

Cs ∼ K1(r
∗ − r)1/5, Us ∼ K2(r

∗ − r)−1/5, (4.1)

where the constants K1 and K2 are related by

K2 =
βK

3/2
1

A5/2
, (4.2)

and the numerical constant A ≈ 0.8868.
The behaviour (4.1) only emerges when Cs is much smaller than β, i.e. when

r∗ − r � β5. Since β is typically rather small, it is difficult to obtain the exponents
accurately using our simple numerical scheme. To highlight the local behaviour, we
therefore use an artificially high value of β = 0.5. Sample numerical plots of Us and
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dashed lines show the asymptotic behaviours Us ∼ 0.63(1.1132 − r)−1/5, Cs ∼ 0.35(1.1132 − r)1/5.
Parameter values Cb = 0.58 mol m−3, a = 0.04 m, C0 = 0.5; β is artificially increased to 0.5 to
highlight the local behaviour.
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Figure 10. (a) The surface velocity Us and subsurface concentration Cs versus radial coordinate
r, for the parameter values Cb = 0.58 mol m−3, a = 0.04 m, C0 = 0.5; ε is artificially increased to
0.1 to highlight the local behaviour. The dot-dashed line shows the fit (4.3) with B = 0.46. (b) The
corresponding plot of log(Cs) versus 1/(r0 − r).

Cs are shown in figure 9, along with fitted functions of the form (4.1). A log–log plot
indicates that the numerical solutions adopt the predicted power-law behaviour as
the singularity is approached. Moreover, the fitted curves have K1 ≈ 0.63, K2 ≈ 0.35,

which are close to satisfying (4.2), since βK
3/2
1 /A5/2 ≈ 0.338.

4.3. Behaviour near the sink

Now we consider the possible behaviour of solutions to (2.4)–(2.16) as r approaches
r0, where the subsurface velocity F(r/r0) tends to infinity. Figure 5 indicates that the
subsurface concentration approaches infinity while the surface velocity goes to zero
in a very small neighbourhood of r0. To explore this region further, we artificially
increase the value of ε to 0.1 so that, as shown in figure 10, the range over which Cs
and Us vary is expanded.

The details of the local analysis are given in Appendix C. We find that, while the
bulk velocity tends to infinity algebraically, the subsurface concentration is exponen-
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Figure 11. Close-up of the behaviour of Us from figure 10 near r = r0.

tially large, with

Cs ∼ B exp

[(εr0
π

)3/2 2√
3(r0 − r)

]
, (4.3)

for some constant B. Figure 10 shows that this predicted behaviour (with B = 0.46)
agrees with our simulations.

With the subsurface concentration given by (4.3), conservation of surfactant forces
a gradient in the surface velocity, which culminates in the formation of a stagnation
point a small but finite distance away from the sink at the edge of the cylinder. This
does not appear at first glance to agree with the numerical results shown in figures 5
and 10. However, the unbounded growth of Cs, and consequent sending of Us to
zero, only occurs in a layer near r = r0 whose thickness is O(ε3/2). For the parameter
values used in figure 5, ε ≈ 0.007, so that the point (say r = r∗) at which Us becomes
zero is extremely close to r = r0. With ε = 0.1, there is a noticeable difference, as can
be seen in the close-up shown in figure 11.

The predicted local behaviour of Us(r) is

Us ∼ π2

18γ(3/4)4

(
dCs
dr

(r∗)
)2

(r∗ − r)3, (4.4)

where γ is the Gamma function. Close inspection of figure 11 reveals that Us does
appear to go to zero smoothly, although our results do not agree particularly well
with (4.4). For the parameter values used in figure 11, (4.4) takes the form

Us ≈ 1.1× 109(r∗ − r)3, (4.5)

and our numerical scheme is unable to reproduce this dramatic behaviour accurately.
What happens between the stagnation point and the sink is unclear, but it seems

highly unlikely that this situation could be stable, providing further support for our
proposal to reject this kind of solution. In reality, as pointed out previously, the bulk
velocity is bounded, although large, near the edge of the cylinder. Presumably the
subsurface concentration starts to grow in a similar fashion to (4.3), but is cut off in
a small neighbourhood of r = r0. In principle, therefore, Us may still reach zero at a
finite radius r∗ < r0, so long as the cut-off of Cs occurs in r∗ < r < r0.
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4.4. The selected solution

Finally we examine the possible asymptotic behaviour of solutions wherein Cs stays
bounded as r → r0. With the velocity field driven by a sink flow at infinity, we expect
a Jeffery–Hamel-type flow as in Appendix C. However, any such flow inevitably has
∂u/∂z = O(1/(r0 − r)2) on z = 0 which gives rise to the exponential growth (4.3) in
Cs. The only way to avoid this is to choose the leading-order solution for u such that
∂u/∂z ∼ 0 on z = 0, that is

Us ∼ u ∼ εr0

π(r0 − r) as r → r0. (4.6)

With Us →∞ as r → r0, conservation of surfactant implies that Cs must go to
zero (order-of-magnitude arguments indicate that replenishment is subdominant).
The lowest-order problem for C is therefore

εr0

π

(
1

r0 − r
∂C

∂r
− Z

(r0 − r)2

∂C

∂Z

)
∼ ∂2C

∂Z2
,

C → 1 as Z →∞
C = 0 on Z = 0,

 (4.7)

and its solution, in the limit r → r0, approaches the similarity solution

C ∼ erf

(
Z

2(r0 − r)
√

εr0

π log(k/(r0 − r))
)
, (4.8)

where the constant k is arbitrary. It follows that

∂C

∂Z
∼ 1

π(r0 − r)
√

εr0

log(k/(r0 − r)) on Z = 0, (4.9)

and conservation of surfactant (2.15) then implies that

Cs ∼ 2β(r0 − r)
√

log(k/(r0 − r))
εr0

. (4.10)

We test these asymptotic estimates in figure 12. As noted in § 4.2, the smallness of
β tends to obscure the local behaviour as Cs → 0, so we artificially increase β to 0.5.
We choose the value of C0 for which (as closely as possible) Cs is bounded as r → r0.
The resulting behaviours of Us and Cs are shown in figure 12(a). Figure 12(b) shows
plots of log(Us) and log(Cs) versus log(r0 − r), along with our predictions

log(Us) ∼ − log(r0 − r) + log
(εr0
π

)
, (4.11)

log(Cs) ∼ log(r0 − r) + 1
2

log(− log(r0 − r)) + log

(
2β√
εr0

)
. (4.12)

The agreement appears to be good. Note that, while the error in our estimate (4.11)
for Us is O(r0−r), that in (4.12) is O(1/ log(r0−r)) (associated with the free parameter
k), which is consistent with the discrepancy in figure 12.
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Figure 12. (a) The surface velocity Us and subsurface concentration Cs versus r for the parameter
values Cb = 0.58 mol m−3, a = 0.04 m, β = 0.5 and C0 ≈ 0.663. (b) The corresponding log–log plot;
the dashed lines are the asymptotic predictions (4.11), (4.12).

5. Conclusions
5.1. Summary

In § 2, we presented a system of equations and boundary conditions governing the
liquid velocity and surfactant concentration in the OFC. A detailed derivation of this
model may be found in Breward et al. (2001), where it is shown that the equations
do not specify a unique local behaviour near the axis of the cylinder: instead there
is a one-parameter family of admissible solutions. Thus they were unable to predict
directly how the surface concentration at the centre of the cylinder depends on the bulk
concentration in solution, although this is one of the principal experimental results.

Breward et al. (2001) suggested that a unique solution might be chosen by requiring
the surfactant concentration to be finite as the edge of the cylinder is approached and
non-zero everywhere else on the surface. To ascertain whether this selection mechanism
applies to the OFC, we solved the model numerically in § 3. The numerical solutions
indicate that the general behaviour falls into one of three possible categories.

(a) A singularity forms a finite distance along the interface, where the surface
concentration of surfactant goes to zero while the surface velocity approaches infinity.

(b) The surfactant concentration tends to infinity as the edge of the cylinder is
approached, giving rise to a stagnation point a small distance upstream.

(c) These two generic solutions are separated by a distinguished case in which the
surface concentration is zero at the edge of the cylinder.
We confirmed in § 4 that each represents an admissible asymptotic solution of the gov-
erning equations, rather than a numerical artefact. The proposed selection mechanism
is to insist on the third of these options, and this allows us to determine numerically
a unique solution for any given experimental conditions.

5.2. Comparison with experiment

We are now in a position to compare the predictions of our model with experimental
data. As a diagnostic we plot the (dimensional) surface concentration evaluated
at the centre of the cylinder, Γ (0), as a function of the bulk concentration Cb in
solution. The experimental results are shown as circles in figure 13 for a solution of
hexadecyltrimethylammonium bromide in an overflowing cylinder of radius a = 4 cm
with pump flux Qp = 16 cm3 s−1 – see Bain et al. (2000) for more details about the
experiments. It is thought that these values should be virtually independent of both
a and Qp.
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Figure 13. Dimensional surface concentration Γ (mol m−2), versus dimensional bulk concentration
Cb (mol m−3). The circles show experimental values for a cylinder of radius a = 40 mm and pump
flux Qp = 16 cm3 s−1. The solid line shows the corresponding numerical solution. The dotted line
shows the numerical solution for a = 25 mm, Qp = 8 cm3 s−1.

To compare with these data, we first have to evaluate the three parameters β, r0
and ε, all of which depend on the bulk concentration Cb. For each value of Cb, we
pick C0 and then march downstream until either Cs or Us reaches zero. We then vary
C0 in an attempt to locate the special solution that divides these two cases, and thus
determine the axial surface concentration corresponding to each value of Cb. The
relationship depends on both a and the pump flux Qp; we plot it for typical values
thereof in figure 13 using a solid line (a = 4 cm, Qp = 16 cm3 s−1) and a dotted line
(a = 2.5 cm, Qp = 8 cm3 s−1).

5.3. Discussion

Given the inaccuracy with which many of the physical parameters (e.g. D, Γsat, k)
are known, there is remarkably good agreement between the experimental results
and the numerical predictions, in terms of both order-of-magnitude and trend. Our
model does predict a weak but systematic dependence on the cylinder radius which,
according to Manning-Benson (1998), should not be there. This might be because
our admittedly speculative selection criterion, namely insisting that Cs be bounded
as r → r0, is simply wrong. We have shown, however, that this criterion amounts to
rejecting solutions in which either the surface concentration reaches zero at a finite
distance along the free surface or an isolated stagnation point is formed inside the rim
of the cylinder. To our knowledge, neither of these eventualities has been observed
in experiments, and intuitively it seems unlikely that either could be physical. We
therefore suspect that our selection mechanism is correct for our model equations, and
that any disagreement between our predictions and experiment reflects shortcomings
of the model. Our condition of zero concentration at the rim arises naturally from
the mathematics, and leads to an experimentally sensible solution. It is not, though,
at all obvious physically how the fluid manages to satisfy this downstream boundary
condition on a parabolic problem. This puzzling feature clearly warrants further
modelling and experimental investigation.

There are certainly many potentially important physical effects that we plan to
consider in future refinements of the model. For example, many experiments have
been carried out at sufficiently high bulk concentration that surfactant molecules in
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solution associate to form micelles. Incorporation of micellar effects in our equations
is important both to interpret the results of such experiments and also because
solutions above the critical micelle concentration are frequently used in practical
applications.

It is also a priority to model the influence of electrostatic effects, since many
practically important surfactants are ionic in character. This means that molecules
adsorbed in the interface set up an electrical double layer that tends to inhibit the
transport of further molecules from the bulk. Anomalous experimental results thought
to be caused by ionic effects have already been observed in the OFC, especially at low
bulk concentration (Bain et al. 2000). Another development of current experimental
interest is the addition of further ionic species (e.g. salt) to the surfactant solution,
the aim being to screen the effects of the double layer at the interface.

Other physical processes we have thus far neglected include surface diffusion and
the possibility of the surface and bulk concentrations being out of thermodynamic
equilibrium. Inclusion of such effects may regularize the singularities we have dis-
covered. For example, the generation of singularities in the bulk concentration may
be limited by the formation of micelles, while surface diffusion would smooth the
behaviour of the surface concentration near the point where it vanishes. Preliminary
investigations indicate, however, that none is able to resolve the indeterminacy in the
solution near r = 0; if anything they may make the situation worse. Some non-local
criterion is therefore still required to select a unique solution.

The most suspect assumption made in our model is the zero-Froude-number limit,
in which the free surface is perfectly flat and there is a line sink around the edge
of the cylinder. Our defence for this approach is the reported lack of dependence
of the results on the details of the flow over the rim. Nevertheless, the limit is
certainly invalid near the rim and we suspect that this simplification, if anything,
is responsible for systematic deviations between model and experimental data. In
practice, the liquid flows over the edge at a non-zero (but small) height with a finite
(but large) velocity. Presumably, under the action of the resultant high local strain
rate, the concentration drops to a small (but non-zero) value. Our solution procedure,
in which the concentration is set to zero at the rim, may therefore be regarded
as the leading-order matching condition, for a singular perturbation in which the
Froude number is the small parameter. For non-zero Froude number, the liquid–air
interface is a free boundary and the problem is consequently very much harder to
solve.

Finally, we reiterate the point that the singularities we have observed may arise
in general surfactant flows. The first, due to the interaction between Marangoni
acceleration of the interface and the consequent convection of surfactant, results in
the surface concentration reaching zero a finite distance from the axis of the cylinder.
The second singularity is caused by a strong gradient in the bulk flow, balanced by
an exponentially large concentration gradient that gives rise to a stagnation point
on the interface. The interesting integro–differential equation (C 21) holds the key
to understanding whether or not the stagnation point forms. As argued in § 4.3, it
appears to be unnecessary for the subsurface velocity to be singular: a sufficiently
rapid acceleration should suffice.

The authors would like to acknowledge the invaluable assistance of Dr C. D. Bain,
Professor R. C. Darton and Dr J. R. Ockendon in the preparation of this manuscript.
We have also enjoyed many useful discussions with Professor J. F. Harper, Dr S. D.
Howison and Professor O. E. Jensen.
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Appendix A. Approximation for the function F(ρ)

To avoid having to evaluate the integral in (2.10) repeatedly, we employ an approx-
imation that is obtained as follows. We expand (2.10) first as ρ→ 0 up to O(ρ7), then
as ρ → 1, keeping terms up to order (1 − ρ)3 log(1 − ρ). These two expressions are
then combined to yield a composite expansion with the correct asymptotic behaviour
near ρ = 0 and ρ = 1, namely

F(ρ) ≈ 2ρ

π(1− ρ2)
+

3

16π
{(1− ρ)(3− ρ) log(1− ρ)− (1 + ρ)(3 + ρ) log(1 + ρ)}

+

(
b1 − 7

8π

)
ρ+

(
b3 − 2

π

)
ρ3 +

(
b5 − 81

40π

)
ρ5

+

(
196

5π
+

255

16π
log 2− 5K

2π
+

15ς

16π
− 10b1 − 6b3 − 3b5

)
ρ7

+

(
−4361

80π
− 387

16π
log 2 +

9K

2π
− 27ς

16π
+ 15b1 + 8b3 + 3b5

)
ρ9

+

(
1697

80π
+

39

4π
log 2− 2K

π
+

3ς

4π
− 6b1 − 3b3 − b5

)
ρ11, (A 1)

where ς is Euler’s constant,

b1 =
1

2π

∫ ∞
0

k

I1(k)
dk ≈ 0.88789, (A 2)

b3 =
1

16π

∫ ∞
0

k3

I1(k)
dk ≈ 0.67199, (A 3)

b5 =
1

384π

∫ ∞
0

k5

I1(k)
dk ≈ 0.64790, (A 4)

K =

∫ ∞
0

(
kI0(k)

I1(k)
− k − 1

2
− 3

8(1 + k)

)
dk ≈ 1.64464. (A 5)

The relative error between (A 1) and (2.10) is everywhere less than 0.04%.

Appendix B. Asymptotic analysis as Cs → 0

We look for solutions in which Cs reaches zero at r = r∗, as shown in figure 3,
while Us is large. A meaningful balance in (2.4)–(2.16) consistent with the anticipated
behaviour is obtained by rescaling as follows:

r = r∗ − δξ, u = δ−1/5ũ, Us = δ−1/5Ũs, w = δ−3/5w̃,

z = δ3/5ζ, Z = δ3/5Z, C = δ1/5C̃, Cs = δ1/5C̃s,

}
(B 1)

where δ � 1. We assume that the singularity develops at a finite distance from the
sink at r = r0; we therefore need not worry about F tending to infinity and may
safely take ε→ 0 for the present.

We rescale (2.4)–(2.16) using (B 1), set ε = 0 and throw away all terms of order δ or
smaller. To lowest order, (2.4), (2.5) simplify to the two-dimensional boundary-layer
equations:

−ũ ∂ũ
∂ξ

+ w̃
∂ũ

∂ζ
=
∂2ũ

∂ζ2
, (B 2)

−∂ũ
∂ξ

+
∂w̃

∂ζ
= 0, (B 3)
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with boundary conditions

ũ = Ũs(ξ) on ζ = 0, (B 4)

w̃ = 0 on ζ = 0, (B 5)

ũ→ 0 as ζ →∞. (B 6)

The advection–diffusion equation for C becomes

−Ũs

∂C̃

∂ξ
+

dŨs

dξ
Z ∂C̃

∂Z =
∂2C̃

∂Z2
, (B 7)

with boundary conditions

C̃ = C̃s(ξ) on Z = 0, (B 8)

δ3/5 ∂C̃

∂Z = − d

dξ

(
ŨsC̃s

β + δ1/5C̃s

)
on Z = 0, (B 9)

∂ũ

∂ζ
= − 1

β + δ1/5C̃s

dC̃s
dξ

on ζ = 0. (B 10)

The rescaling of C means that the boundary condition (2.13) at infinity cannot be
imposed directly, as we will see below.

Now the behaviour near the singularity is obtained by seeking asymptotic expan-
sions of the form ũ ∼ ũ0 + δ1/5ũ1 + . . . and so forth. At leading order, the surfactant
conservation boundary condition (B 9) is dominated by convection, with the implica-
tion that

Ũs0C̃s0 = Q, (B 11)

for some positive constant Q representing the flux of surfactant along the interface.
Thus C̃s0 may be eliminated from (B 10) to give

∂ũ0

∂ζ
=

Q

βũ2
0

∂ũ0

∂ξ
on ζ = 0. (B 12)

Equations (B 10) and (B 11) indicate the mechanism for the formation of a singu-
larity. If diffusion is not strong enough to replenish the interface, then an increase in
the surface velocity leads to a reduction in the surface concentration. The resulting
Marangoni stress acts to accelerate the surface still further, resulting in a feedback
loop. The boundary condition (B 12), along with (B 2)–(B 6), provides a closed system
for the leading-order velocity, which admits a similarity solution of the form

ũ0 = φ′(η), η =
ζ

ξ3/5
, (B 13)

w̃0 = ξ−3/5( 2
5
φ(η)− 3

5
ηφ′(η)), (B 14)

where φ satisfies

φ′′′ − 2
5
φφ′′ − 1

5
(φ′)2 = 0,

φ(0) = 0, φ′(∞) = 0, φ′(0)φ′′(0) = − Q

5β
.

(B 15)

If Q and β are given, then (B 15) has a unique solution with asymptotic behaviour

φ ∼ α(η − η0)
2/3 as η →∞, (B 16)
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for some constants η0 and α > 0. Therefore, if we define

φ = α3/5Φ, η = η0 + α−3/5Y , (B 17)

then Φ(Y ) satisfies the canonical problem

Φ′′′ − 2
5
ΦΦ′′ − 1

5
(Φ′)2 = 0,

Φ ∼ Y 2/3 +
2

3Y
− 10

7Y 8/3
+

1670

189Y 13/3
− 2044415

22491Y 6
+ . . . as Y →∞. (B 18)

We solve (B 18) numerically, shooting from Y →∞, read off the value of Y at which
Φ = 0 (Y0 ≈ −1.29059), and then obtain Φ′(Y0) ≈ 0.71783 and −Φ′′(Y0) ≈ 0.16424.
We recover the value of α from (B 15):

α =

(
Q

−5βΦ′(Y0)Φ′′(Y0)

)1/3

≈ 1.1926

(
Q

β

)1/3

. (B 19)

By substituting into our similarity solution for u, we therefore obtain the leading-order
surface velocity in the form

Ũs0 = A

(
Q

β

)2/5

ξ−1/5, (B 20)

where

A =

(
Φ′(Y0)

3

25Φ′′(Y0)2

)1/3

≈ 0.8868. (B 21)

From (B 11) we obtain the corresponding subsurface concentration,

C̃s0 =
β2/5Q3/5

A
ξ1/5. (B 22)

The leading-order concentration therefore satisfies the problem

∂2C̃0

∂Z2
= −A

(
Q

β

)[
ξ−1/5 ∂C̃0

∂ξ
+
Z

5ξ6/5

∂C̃0

∂Z
]
,

C̃0 =
β2/5Q3/5

A
ξ1/5 on Z = 0,

 (B 23)

which suggests the similarity solution

C̃0 = ξ1/5ψ(Y), Y =
Z
ξ3/5

. (B 24)

It transpires that there is just one solution for ψ that does not grow exponentially as
Y → ∞, namely

ψ(Y) =
51/4γ(1/4)

A5/4
√
π

√
βQ

Y exp

[
A

10

(
Q

β

)2/5

Y2

]
W1/2,1/4

[
A

5

(
Q

β

)2/5

Y2

]
, (B 25)

where γ is the Gamma function andW is Whittaker’s function (Gradshteyn & Ryzhik
1994, p. 1086), from which we deduce the behaviour

ψ ∼ γ(1/4)

51/4A3/4
√
π
Q7/10β3/10

√Y as Y → ∞. (B 26)

Clearly the original condition on C at infinity cannot be applied directly. Instead
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there is an intermediate layer, where C is O(1). Although the solution in this outer
region cannot be found locally, it is reassuring to confirm that a consistent asymptotic
structure emerges from the rescaling

Z̄ = δ2/5Z = δ−1/5Z, (B 27)

resulting in

−Ũs

∂C

∂ξ
+

dŨs

dξ
Z̄
∂C

∂Z̄
= δ4/5 ∂

2C

∂Z̄ 2
, (B 28)

C → 1 as Z̄ →∞. (B 29)

Now, with Ũs0 given by (B 20), the general leading-order solution of (B 28) takes the
form

C0 = h

(
Z̄

ξ1/5

)
. (B 30)

The function of integration h can only be determined by matching with the full
solution upstream of the singularity. Nevertheless, it is clear that a solution of this
form can be made to satisfy the condition at infinity and to match with the inner
solution so long as h satisfies

h(τ)→ 1 as τ→∞, (B 31)

h(τ) ∼ γ(1/4)

51/4A3/4
√
π
Q7/10β3/10

√
τ as τ→ 0. (B 32)

Appendix C. Asymptotic analysis of the sink
As r approaches r0, the local behaviour of the flow is given by the two-dimensional

boundary-layer equations driven by a sink at infinity:

u
∂u

∂r
+ w

∂u

∂z
− ∂2u

∂z2
∼ ε2r2

0

π2(r0 − r)3
, (C 1)

∂u

∂r
+
∂w

∂z
∼ 0, (C 2)

with

u = Us(r) on z = 0, (C 3)

w = 0 on z = 0, (C 4)

u ∼ εr0

π(r0 − r) as z →∞. (C 5)

Our simulations indicate that, while the subsurface velocity approaches infinity, the
surface velocity is unable to keep up and remains finite. Thus the dominant behaviour
as r → r0 is a Jeffery–Hamel flow of the form

u ∼ εr0

π

G(θ)

r0 − r , w ∼ −εr0
π

zG(θ)

(r0 − r)2
, θ =

√
εr0

2π

(
z

r0 − r
)
, (C 6)

where G satisfies

G′′ = 2(G2 − 1),

G(0) = 0, G(∞) = 1,

}
(C 7)
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and its solution is

G(θ) =
3 tanh(θ)[5 tanh(θ) + 2

√
6]

[3 +
√

6 tanh(θ)]2
. (C 8)

Consequently,

∂u

∂z
(r, 0) ∼

(εr0
π

)3/2 G′(0)√
2(r0 − r)2

=
(εr0
π

)3/2 2√
3(r0 − r)2

, (C 9)

and the tangential stress balance (2.16) may then be solved for the surface concen-
tration:

Cs ∼ B exp

[(εr0
π

)3/2 2√
3(r0 − r)

]
, (C 10)

for some constant B.
Thus Cs approaches infinity exponentially quickly as the sink is approached. The

mechanism is that the singular bulk flow applies a traction to the surface, and a
surface concentration gradient must be set up to provide the balancing Marangoni
stress. The surface velocity is then determined a posteriori from conservation of
surfactant:

Us

∂C

∂r
+

dUs

dr
Z
∂C

∂Z
∼ ∂2C

∂Z2
, (C 11)

C = Cs(r) on Z = 0, (C 12)

∂C

∂Z
∼ d

dr

(
UsCs

β + Cs

)
∼ dUs

dr
on Z = 0, (C 13)

C → 1 as Z →∞. (C 14)

With Cs given asymptotically by (C 10), then (C 11), (C 12), (C 14) would appear to
be a well-posed problem for C , except that the surface velocity Us is not known in
advance: it must be solved for as part of the problem by using (C 13).

Since the concentration at Z = 0 grows without bound while that at infinity is
finite, we expect the gradient ∂C/∂Z to become large and negative as the sink is
approached. If so, then (C 13) implies that dUs/dr is likewise large and negative as
r → r0. This may mean that Us approaches zero or a finite value with infinite slope
as r → r0, or that Us becomes zero at a finite value of r < r0. Further evidence as to
which of these is correct is obtained as follows.

The transformation

t =

∫ r

0

Us(ρ) dρ, y = ZUs(r) (C 15)

reduces the advection–diffusion equation (C 11) to the heat equation

∂C

∂t
=
∂2C

∂y2
, (C 16)

while (C 14) implies that

C → 1 as y →∞, (C 17)

C = 1 at t = 0. (C 18)

With C = Cs on y = 0, the solution may be written as

C = 1− y

2
√
π

∫ t

0

[1− Cs(r(τ))] exp

(
− y2

4(t− τ)
)

dτ

(t− τ)3/2
, (C 19)
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and hence

∂C

∂y
=

1√
π

d

dt

∫ t

0

[1− Cs(r(τ))] dτ√
t− τ on y = 0. (C 20)

By substituting this into (C 13) and using the fact that dr/dt = U−1
s , we obtain a

nonlinear Abel integro–differential equation for r as a function of t:

dr

dt
=
√
π

{∫ t

0

[1− Cs(r(τ))] dτ√
t− τ

}−1

. (C 21)

With Cs assumed to be a known function of r and r(0) = 0, (C 21) may be solved as
an initial-value problem for r(t).

We suppose that Cs is bounded for r < r0; it follows that the integral in (C 21) is
also bounded for all r < r0 and therefore that dr/dt cannot change sign without first
becoming infinite (when the integral passes through zero). It is therefore impossible
for r to tend to a finite value as t → ∞ and the only remaining possibilities are (i)
r = r0 at a finite value of t or (ii) dr/dt reaches infinity at a finite value of t and
r < r0. The former would correspond to the surface velocity attaining a finite value
(possibly zero) at the sink r = r0, while the latter would imply that Us reaches zero at
a finite value of r < r0.

Numerical experiments performed on (C 21) indicate that, although (i) may arise
from less singular Cs(r), the form given in (C 10) always leads to option (ii). Indeed,
with Cs given asymptotically by (C 10), one can argue that it is impossible for r to
reach r0 as follows. Suppose r(t∗) = r0 for some finite value t∗. For the integral in
(C 21) to be finite, r must approach r0 very slowly, with

r0 − r & const

− log(t∗ − t) as t→ t∗ (C 22)

and, therefore,

dr

dt
&

const

(t∗ − t) log2(t∗ − t) as t→ t∗. (C 23)

Using this, we deduce an estimate for the local behaviour of the integral in (C 21):∫ t∗

t

Cs(r(τ)) dτ√
t∗ − τ . const(t∗ − t) log2(t∗ − t) as t→ t∗, (C 24)

which appears to be inconsistent with Cs →∞ as t→ t∗.
We claim, therefore, that Us reaches zero at a finite value of r < r0, beyond which

the solution cannot be continued. The behaviour of Us near the spontaneously formed
stagnation point is as follows. Suppose that Us = 0 at r = r∗ = r(t∗) so that, from
(C 21), ∫ t∗

0

Cs(r(τ))√
t∗ − τ dτ = 2

√
t∗, (C 25)

and that r has the local behaviour

r(t) ∼ r∗ − A(t∗ − t)α as t→ t∗, (C 26)

for some positive constant A and α ∈ (0, 1/2). The left- and right-hand sides of (C 21)
may then be expanded locally to give

Aα(t∗ − t)α−1 ∼ γ(−α)
AC ′s(r∗)γ(−α− 1/2)

(t∗ − t)−α−1/2, (C 27)
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where C ′s(r∗) = dCs/dr(r
∗) and, therefore,

α = 1
4
, A =

√
6
√

2 γ(3/4)√
πC ′s(r∗)

. (C 28)

The corresponding behaviour of Us(r) is (4.4).
It is worth pointing out that our prediction (C 10) of the behaviour of Cs is obtained

in the limit r → r0, even though we have argued that the solution never reaches r0.
Thus our estimates only apply if ε is small, so that r∗ is close to r0.
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